Contents

GW231123: Detection of the merger of the most massive black holes ever observed with gravitational waves!

Contents

The LIGO-Virgo-KAGRA (LVK) Collaboration has announced the detection of the merger of the most massive black holes ever observed with gravitational waves, using the US National Science Foundation funded LIGO Hanford and Livingston Observatories. The merger produced a final black hole more than 225 times the mass of our Sun. The signal, designated GW231123, was observed during the fourth observing run (O4) of the LVK network on November 23, 2023.

The two black holes that merged were approximately 103 and 137 times the mass of the Sun. In addition to their high masses they are also rapidly spinning, making this a uniquely challenging signal to interpret and suggesting the possibility of a complex formation history.

“The discovery of such a massive and highly spinning system presents a challenge not only to our data analysis techniques – says Ed Porter, researcher at the Astroparticle and Cosmology laboratory (APC) of CNRS in Paris – but will have a major effect on the theoretical studies of black hole formation channels and waveform modelling for many years to come. Actually, current models of stellar evolution do not allow the existence of such massive black holes, which could possibly have formed through previous mergers of smaller black holes.”

Approximately 100 black-hole mergers have previously been observed through gravitational waves, analysed and shared with the wider scientific community. Until now the most massive binary was the source of GW190521, with a much smaller total mass of “only” 140 times that of the sun.

More information