/images/polgraw-logo.svg

Gravitational Waves: astrophysics, source modeling, data analysis, construction of the Virgo detector

LIGO and Virgo make first detection of gravitational waves produced by colliding neutron stars.

Discovery marks first cosmic event observed in both gravitational waves and light. For the first time, scientists have directly detected gravitational waves — ripples in space and time — in addition to light from the spectacular collision of two neutron stars. This marks the first time that a cosmic event has been viewed in both gravitational waves and light. The discovery was made using the U.S.-based Laser Interferometer Gravitational-Wave Observatory (LIGO); the Europe-based Virgo detector; and some 70 ground- and space-based observatories.

Virgo congratulates Rainer Weiss, Barry C. Barish and Kip S. Thorne for being awarded the Physics Nobel Prize 2017!

The Virgo collaboration warmly congratulates Rainer Weiss, Barry C. Barish and Kip S. Thorne on the award of the 2017 Nobel prize in physics ‘‘for decisive contributions to the LIGO detector and the observation of gravitational waves’’. The first detection of gravitational waves was announced by the LIGO Scientific Collaboration and the Virgo Collaboration on February 11 2016, five months after the observation of the GW150914 signal, generated by the coalescence of two stellar mass black holes located more than a billion light-years away.

The LIGO-Virgo global network of three interferometers opens a new era for gravitational wave science by jointly observing a black-hole merger

The Virgo collaboration and the LIGO Scientific Collaboration report the three-detector observation of gravitational waves. This result highlights the scientific potential of a global network of gravitational wave detectors, by delivering a better localization of the source and historically first time when the polarizations of gravitational waves have been assessed.The three-detector observation was made on August 14, 2017 at 10:30:43 UTC. The detected gravitational waves were emitted during the final moments of the merger of two black holes with masses about 31 and 25 times the mass of the Sun and located about 1.

A very exciting LIGO-Virgo Observing run draws to a close on the 25th of August

A very exciting LIGO-Virgo Observing run draws to a close on the 25th of August. The Virgo and LIGO Scientific Collaborations have been observing since November 30, 2016 in the second Advanced Detector Observing Run ‘O2’, searching for gravitational-wave signals, first with the two LIGO detectors, then with both LIGO and Virgo instruments operating together since August 1, 2017. Some promising gravitational-wave candidates have been identified in data from both LIGO and Virgo during our preliminary analysis, and we have shared what we currently know with astronomical observing partners.

VIRGO joins LIGO for the “Observation Run 2” (O2) data-taking period

Today, Tuesday August 1st 2017 at 11 CEST, the VIRGO detector based in Europe has officially joined “Observation Run 2” (O2) and is now taking data alongside the American-based twin LIGO detectors. This major step forward for the VIRGO Collaboration is the outcome of a multi-year upgrade program, whose primary goal was to significantly improve the detector performance in terms of sensitivity. Press release .

GW170104: Third direct detection of gravitational waves

The Advanced LIGO detectors registered in the 4th of January 2017 a merger of a black hole binary system of masses approx. 30 and 20 Solar masses and a formation of a remnant black hole of 49 solar masses and spin parameter of about 0.64, at a distance of about 880 Mpc (corresponding to a redshift z = 0.18). It is likely that at least one of the black holes was spinning opposite the direction of the binary orbit.